bursty_dynamics.visual

This module contains functions for plotting the results.

bursty_dynamics.visual.event_counts(train_info_df, x_limit=30, hue=None, **kwargs)

Plots the count of non-duplicate timestamped events per train from the given DataFrame.

Parameters

train_info_dfDataFrame

A DataFrame containing a column named 'unique_event_counts' which holds the count of unique events (no duplicates at same time) for different entries.

x_limitint, optional

The upper limit for the x-axis. Default is 30.

huestr, optional

Column name for hue segmentation. Default is None.

kwargs

Additional keyword arguments passed to sns.countplot.

Returns

matplotlib.figure.Figure

The figure object containing the plot.

Example

Here is an example plot of the function:

Example Plot
bursty_dynamics.visual.gridplot(df, bins=25, lower_limit=0, text_scaling=6, figsize=(9, 7), **kwargs)

Create a grid plot of Memory Coefficient (MC) vs Burstiness Parameter (BP) with a colour bar.

Parameters

dfDataFrame

Input DataFrame containing columns 'MC' and 'BP'.

binsint, optional

Number of bins for the histogram. Default is 25.

lower_limitint, optional

Minimum value for the color scale. Values below this will be colored grey. Default is 0.

text_scalingfloat, optional

Scaling factor for the text in the plot. Default is 6.

figsizetuple, optional

Size of the figure. Default is (9, 7).

Returns

matplotlib.figure.Figure

The figure object containing the plot.

Example

Here is an example plot of the function:

Example Plot
bursty_dynamics.visual.histogram(df, hist=True, set_axis=False, hue=None, **kwargs)

Plot histograms for Burstiness Parameter (BP) and Memory Coefficient (MC).

Parameters

dfDataFrame

Input DataFrame containing columns 'BP' and 'MC'.

histbool or str, optional

If True, plot separate histograms for 'BP' and 'MC'. If 'Both', plot overlapping histograms for 'BP' and 'MC'. If 'BP' or 'MC', plot histogram for the specified column. Default is True.

set_axisbool, optional

Whether to set axis limits to [-1, 1]. Default is False.

huestr, optional

Column name for hue segmentation. Default is None.

kwargs

Additional keyword arguments passed to sns.histplot.

Returns

matplotlib.figure.Figure or None

Figure object containing the generated plots if successful, otherwise None if the 'hist' parameter is invalid.

Notes

  • If 'hist' is True, it will create separate histograms for 'BP' and 'MC' in a vertical layout.

  • If 'hist' is 'Both', it will create overlapping histograms for 'BP' and 'MC' on the same plot.

  • If 'hist' is 'BP' or 'MC', it will create a histogram for the specified column.

  • The hue parameter allows for segmented histograms based on the specified column.

  • When hist is set to 'Both', the hue parameter is ignored.

  • The set_axis parameter can be used to standardize the x-axis range to [-1, 1].

  • Additional styling and plotting options can be passed through **kwargs.

Example

Here is an example plot of the function:

Example Plot
bursty_dynamics.visual.scatterplot(df, hue=None, set_axis=False, **kwargs)

Create a scatter plot with marginal histograms showing the relationship between 'MC' and 'BP'.

Parameters

dfDataFrame

Input DataFrame containing columns 'MC' and 'BP' which are plotted on the x and y axes, respectively.

huestr, optional

Column name in the DataFrame used for color encoding of the scatter plot. If None, the plot is created without color encoding.

set_axisbool, optional

Whether to set the axis limits to [-1, 1]. Default is False. If True, the x and y axes will be constrained to the range [-1, 1].

kwargs

Additional keyword arguments passed to sns.jointplot.

Returns

matplotlib.figure.Figure

The figure object containing the scatter plot and marginal histograms.

Example

Here is an example plot of the function:

Example Plot
bursty_dynamics.visual.train_duration(train_info_df, x_limit=5, hue=None, **kwargs)

Plots a distribution of train durations in years from the given DataFrame.

Parameters

train_info_dfDataFrame

A DataFrame containing a column named 'train_duration_yrs' which holds the duration of training in years for different entries.

x_limitint, optional

The upper limit for the x-axis. Default is 5.

huestr, optional

Column name for hue segmentation. Default is None.

kwargs

Additional keyword arguments passed to sns.histplot.

Returns

matplotlib.figure.Figure

Figure object containing the generated plot.

Example

Here is an example plot of the function:

Example Plot